

Table Of Contents

0

Military Standard MS20271 Page 19

Quick-Change/ Telescopic Pages 16-17

Overview	1–9
Apex 300 Series Universal Joints 10-	-11
Apex 400 Series Universal Joints 12-	-13
Apex Double Universal Joints 14-	-15
Apex Quick-Change/Telescopic Universal Joints	-17
MS20270 Universal Joints	18
MS20271 Universal Joints	19
MS Series Deflection Curves	20
Needle Bearing Universal Joints	21
Instructions to Calculate	
Correct Joint Size	22
Custom Application Sheet	23

APEX Less Downtime, More Lifetime.

Apex has been supplying universal joints for military and commercial applications since 1933. Over these 70+ years we have provided engineered solutions for thousands of demanding applications worldwide. Today Apex is recognized as the *"Less downtime, more Lifetime"* leader in pin and cube universal joint designs and applications. Our primary markets are:

Government/Military Applications

Apex meets the demanding requirements military applications such as gun systems, remote valve control, Unmanned Aerial Vehicles (UAV), thrust vector control systems, and fan drive universal joints.

Aerospace

Commercial, military, business jets, and private aircraft all utilize Apex universal joints. Typical uses include flap/slat actuation, "hinges" for cargo doors and windows, mechanical linkages for steering, trim control and door latching mechanisms. Apex double universal joints have even been used to replace gear boxes. These high strength-to-weight ratio universal joints have excellent torsional freeplay (i.e., backlash) characteristics suited to this environment.

Off-highway/ Construction Equipment

Applications include steering columns, a variety of mechanical linkages and power take offs. Also included are custom designs for specialty equipment (e.g. fire trucks.)

Performance Racing

Our MS series of universal joints have become the standard by which all other universal joints are measured. The same aerospace design considerations are applicable in this competitive market. Primary uses are for steering, shift linkages, and chassis adjustment applications.

Industrial Power Transmission

This represents the most diverse area of applications. Some typical uses are steel leveling equipment, links to conveyor systems, pump drive systems, multiple spindle drill heads, bowling alley pin setters, canning equipment, centerless grinders, bottling machines, industrial sewing machines, control linkages, mixing equipment, packaging machinery, and industrial scales. This list represents only a fraction of the applications where Apex universal joints are used. Our "quick-change" universal joints are extremely popular in this area. They eliminate precision alignment requirements and allow for quick repair of critical machinery and assembly/conveyor lines.

Apex universal joints consistently deliver performance in process industries where continuous operation is the norm and equipment availability/uptime is critical.

Whatever your application, you can depend on Apex universal joints to provide rigidity and exceptionally high strength-to-weight ratios with less deflection, superior fatigue resistance and high overload capacity. Add to this Apex's wide selection of elastomeric covers that seal lubrication in and protect the universal joint from harsh operating environments (e.g., dirt, water, abrasive slurry, etc.), and you have unsurpassed reliability for your application. All of these features can be incorporated into single, double, telescopic, or quick-change universal joints. We specialize in make-to-order products engineered to optimize your application and reduce operating costs. Apex is the Performance Authority for pin-andcube universal joints.

Apex Offers A Variety of Solutions For Your Standard or Custom Application

High pressure gear oil, "natural" grease, synthetic grease, synthetic grease with additives (improves If your application calls for something other than our "dry start" characteristics), non-outgassing grease, standard 300 or 400 series universal joints, Apex food grade grease, graphite powder, and solid film can provide it for you. Our engineers are ready to lubricant. solve your application problems. Some of the options available are:

Universal Joint Configurations:

In addition to the standard plain bearing design, there keyways, precision diameters (.0002"), is also a "Press Fit" design which improves fatigue gears, whistle-notch, and quicklife in reverse loading applications. For higher RPMs, release. Where applicable, these are we offer a needle bearing line. available in male or female.

Materials:

Additionally, multiple features Alloy steels (4140, 4150, 4340), Austenitic stainless can be combined on the same steel (303, 304, 316, Nitronic 60), Martensitic hub. Apex engineers utilize these options stainless steel (416, 440C, 13-8, 17-4, 15-5), daily to design the product right for your needs. carbon steel (1020, 8620) and specialty steels (such as Stressproof and S-2 Modified).

Bearings:

Apex utilizes plain, rolling element and polymer bearings in its designs. Selecting the right bearing Apex universal joints are supplied from maximizes the performance the universal joint, our Dayton facility which has AS9100 minimizes/eliminates maintenance, and increases the certification. AS9100 is a widely adopted life of the universal joint. and standardized quality management system for the aerospace industry and Heat Treatment: incorporates fully the entirety of the Apex proprietary heat treat, selective through current version of ISO 9001.

hardening, induction hardening, and case hardening.

Surface Treatment:

Light oil, cadmium (electrolytic and vacuum), electrolytic zinc, nickel (electrolytic and electroless), black oxide, phosphate (manganese and zinc), solid film lubricant, and a variety of paint solutions.

Cover Materials:

Silicone, Nitrile, EPDM, Viton, Neoprene, FDA approved food polymer, vinyl, Silicon/Dacron, Fluoro-Silicon/Nomex.

Cover Styles:

Bulbous, flat, and convoluted.

Lubricants:

Geometry:

Square, Hex, Threaded, splines (involute or straightsided), gears, split collar with lug bolt,

From extreme loading (including seismic) to harsh environments (-80° to 600° F), Apex is your Total Solution Source.

Quality

Our Dayton facility, manufacturing site of Apex Universal Joints, has AS9100 Quality System Certification. The driving force behind the implementation of the Quality System is the commitment "to provide our customers with the

best value delivered by offering only products and services that meet or exceed their expectations."

Apex design engineers utilize 3-D solid models and finite element analysis (FEA) to develop and evaluate different design options.

The Apex Total Solution Designed Into **Every Universal Joint**

The illustration below highlights many of the common design features that have made Apex the Market Leader in providing "less downtime, more lifetime" for some of the most demanding applications. At the heart of this success is engineering excellence that created and continues to refine this design to meet the ever increasing challenges of new applications. To further compliment this, add Apex's manufacturing capabilities and its proprietary heat-treat processes. The result is a "balanced" design that provides the highest strength-to-weight ratio pin and cube universal joint available. It is not uncommon for Apex to outperform the competition by at least 30% in strength for equivalent size products.

When you bring your applications to Apex, you will be supported by a technical staff that has the in-house capability to perform Finite Element Analysis (FEA), 3-D Solid Modeling, Metallurgical analysis, non-destructive testing, functional testing, and prototype production.

Efficient operation up to 35° standard (higher operating angles available)

Designed-in overload capacity for greater reliability. (Temporary torsional overloads up to 80% and axial overloads up to 150% of the rated ultimate capacity can occur without harmful binding.)

Proprietary heat treat of alloy steel maximizes "toughness"

Available with covers that seal in lubrication and greatly improve service life.

The most useful tool, however, is the knowledge gained from providing application solutions for over 60 years. Use the application sheet at the back of this catalog to find out how Apex universal joints can improve the performance of your application.

Short delivery times required for replacement parts or product development samples can be produced in the "Short Run Cell".

This cell has all of the manufacturing capability to produce almost any configuration universal joint

in an expedited manner. A single machinist takes ownership of the job and is responsible for it from production to final assembly. Please ask about this service if you have an expedited need for a small quantity of parts.

300 Series Single Universal Joints

300 Series

	Minimum Ultimate Static Torsional	Ultimate			Max	kimum	Maximum I	Peak Torque	Torsional Play			
Size	Static I Stre	Strength		Axial Strength		(overload) Torque		reversal conditions)			Max	
	Lbs-in	N-m	Lbs	N	Lbs-in	N-m	Lbs-in	N-m	Lbs-in	N-m	Degrees	
Perform	nance spe	ecifications	s for standa	rd product	S							
3/8"	276	31	500	2,224	156	18	55	6	4	0.45	1.00	
1/2"	504	57	1,400	6,228	300	34	110	12	4	0.45	0.80	
5/8"	960	108	2,500	11,121	576	65	190	21	4	0.45	0.64	
3/4"	1,680	190	4,500	20,017	1,008	114	340	38	4	0.45	0.53	
7/8"	2,520	285	7,000	31,138	1,512	171	500	56	8	0.90	0.46	
1"	4,500	508	12,500	55,603	2,700	305	900	102	8	0.90	0.40	
1-1/4"	7,200	813	19,700	87,630	4,320	488	1,450	164	8	0.90	0.32	

In addition to these standard configurations, different end configurations can be combined. Please call for additional information and pricing. Metric and special sizes available upon request. Please call or fax form at the back of catalog

7.200

9.360

15,600

813

1,058

1,763

2.400

3,100

5,200

271

350

588

8

8

0.90

0.90

8 0.90

0.27

0.23

0.20

106.757

128,998

173,481

Note: The first number(s) after the 300 or 400 series prefix represent the outside diameter of the universal joint in 16th's of an inch. A number following this is the diameter of the bore in 16th's of an inch. If the product has a keyway it will be represented by a number following the bore size and is in 32nd's of an inch. For example, 300-20-12-6 is a 1.25' O.D. (20/16") universal joint with a .75" (12/16") bore on each end and a .188" (6/32") keyway.

Part Number (Uncovered)	+.001 Outside	A ,006 Diameter	+/- Overal	B .031 I Length	Weight of Solid-hub Covered Assembly		
	in	mm	in	mm	Lbs	kg	
Solid Hubs							
300-6-S	0.375	9.5	1.750	44.4	0.093	0.042	
300-8-S	0.500	12.7	1.875	47.6	0.144	0.065	
300-10-S	0.625	15.9	2.188	55.6	0.233	0.106	
300-12-S	0.750	19.1	2.500	63.5	0.356	0.162	
300-14-S	0.875	22.2	3.000	76.2	0.508	0.231	
300-16-S	1.000	25.4	3.375	85.7	0.758	0.345	
300-20-S	1.250	31.8	3.750	95.2	1.247	0.567	
300-24-S	1.500	38.1	4.500	114.3	2.156	0.980	
300-28-S	1.750	44.4	5.000	127.0	3.125	1.420	
300-32-S	2.000	50.8	5.500	139.7	4.500	2.045	

Part Number	C +/031 Bore Depth		G + 003	- 000	Keyway Size					
(Uncovered)			Bore Dia	ameter	Wic	ith	Dep	Depth		
	in	mm	in	mm	in	mm	in	mm		
Keyways										
300-12-8-4	0.750	19.1	0.500	12.7	0.125	3.2	0.063	1.6		
300-14-8-4	0.938	23.8	0.500	12.7	0.125	3.2	0.063	1.6		
300-16-10-6	0.938	23.8	0.625	15.9	0.188	4.8	0.094	2.4		
300-20-10-6	1.000	25.4	0.625	15.9	0.188	4.8	0.094	2.4		
300-20-12-6	1.000	25.4	0.750	19.0	0.188	4.8	0.094	2.4		
300-24-14-6	1.125	28.6	0.875	22.2	0.188	4.8	0.094	2.4		
300-28-16-8	1.250	31.8	1.000	25.4	0.250	6.3	0.125	3.2		
300-32-18-10	1.375	34.9	1.125	28.6	0.313	8.0	0.156	4.0		

Note: Universal joint assemblies are available with different bore/keyway sizes on each hub. Many combinations are standard products. Please call for part numbers, price and availability.

300 Series – Uncovered

1-1/2"

1-3/4"

2"

12.000

15,600

26,040

1.356

1.763

2,942

24.000

29,000

39,000

(Uncovered)	Bore I	Depth	Bore Di	ameter	
	in	mm	in	mm	
Bored Hubs					
300-6-4	0.375	9.5	0.250	6.3	
300-8-4	0.500	12.7	0.250	6.4	
300-8-6	0.500	12.7	0.375	9.5	
300-10-6	0.625	15.9	0.375	9.5	
300-10-7	0.625	15.9	0.438	11.1	
300-10-8	0.625	15.9	0.500	12.7	
300-12-8	0.750	19.1	0.500	12.7	
300-12-10	0.750	19.1	0.625	15.9	
300-14-8	0.938	23.8	0.500	12.7	
300-14-12	0.938	23.8	0.750	19.1	
300-16-10	0.938	23.8	0.625	15.9	
300-20-10	1.000	25.4	0.625	15.9	
300-20-12	1.000	25.4	0.750	19.0	
300-24-14	1.125	28.6	0.875	22.2	
300-28-16	1.250	31.8	1.000	25.4	
300-32-18	1.375	34.9	1.125	28.6	

+/-.031

Part Nu

G +.003. -.000

+ 00	A 1 - 006	D (Expo	REF)	Maxi	imum Co	over Diam	eter		
Outside	Diameter	Hub L	ength	Fi	at	Bulb	Bulbous		
in	mm	in	mm	in	mm	in	mm		
Cover	Options								
0.375	9.5	0.531	13.5	0.625	15.9	0.781	19.8		
0.500	12.7	0.500	12.7	0.750	19.1	1.031	26.2		
0.625	15.9	0.625	15.0	0.938	23.8	1.156	20.4		
0.750	19.0	0.688	17.5	1.063	27.0	1.438	36.5		
0.875	22.2	0.859	21.8	1.250	31.8	1.563	39.7		
1.000	25.4	0.984	25.0	1.375	34.9	1.906	48.4		
1.250	31.8	1.031	26.2	1.688	42.9	2.188	55.6		
1.500	38.1	1.219	31.0	1.938	49.2	2.750	69.9		
1.750	44.4	1.375	34.9	2.188	55.6	2.813	71.5		
2.000	50.8	1.438	36.5	2.625	66.7	3.313	84.2		

Add F to part number for Flat Cover.

Add C to part number for Bulbous Cover.

Extra Heavy-Duty Industrial Universal Joints

400 Series

- Operating angles up to 35 degrees
- Sizes from 2-1/2" to 4"
- Ultimate static strength up to 139,200 lbs-in
- Available with or without lubrication covers
- Select from solid, bored, and keyway hubs
- In addition to the standard items listed, each hub can have a unique interface geometry
- Available with plain bearings, bronze-sleeved bearings (field-replaceable wear item to extend universal joint life), and rolling element
- Plating available upon customer request
- Field/customer rebuild kits available

Main pin

Precision size for minimum side play Close alignment holes for smooth operation -

Heat treated alloy steel

Cube

Nut Self lockin

Case hardened for wear

Precision ground for long life -Slip fit in center cube

Size	Minimum Ultimate Static Torsional StrengthSizeStrengthLbs-inN-m		Ultir Axial S	nate trength	Maxi Moment (overloac	mum ary Stall I) Torque	Maximum Peak Torque (for shock load or reversal conditions)		
			Lbs	N	Lbs-in	N-m	Lbs-in	N-m	
Performa	nce specific	ations for st	andard proc	ducts					
2-1/2	38,040	4,298	54,000	240,204	22,800	2,576	7,600	859	
3	61,440	6,942	75,000 333,616		36,800	4,158	12,250	1,384	
4	139,200	15,728	125,000	556,028	83,500	9,434	28,000	3,164	

Part Number (Uncovered)	A +.001,006 Outside Diameter		B +/0 Overall L	B +/031 Overall Length		ht of I-hub Assembly	Part Number (Uncovered)	C +/031 Bore Depth		G +.003000 Bore Diameter	
	in	mm	in	mm	Lbs	kg		in	mm	in	mm
Solid Hubs							Bored Hubs				
400-40-S	2.500	63.5	7.000	177.8	9.9	4.49	400-40-24	1.750	44.4	1.500	38.1
400-48-S	3.000	76.2	9.000	228.6	17.8	8.07	400-48-28	2.375	60.3	1.750	44.5
400-64-S	4.000	101.6	10.625	269.9	35.5	16.14	400-64-32	3.000	76.2	2.000	50.8
							400-64-36	3.000	76.2	2.250	57.2
							400-64-40	3.000	76.2	2.500	63.5

Dort Number		021	G +.003000			Keyway	/ Size		A + 001 - 006		D (REF)		Max	Maximum Cover Diameter			
(Uncovered)	Bore I	Depth	Bore Di	ameter	Wi	dth	Dep	th	+.001,006 Outside Diameter		Hub Length		Flat		Bulbous		
	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	
Bored Hubs	Bored Hubs with Keyways								Covere	d Unive	ersal Jo	oints					
400-40-24-12	1.750	44.4	1.500	38.1	0.375	9.5	0.188	4.8	2.500	63.5	2.000	50.8	3.250	82.6	4.125	104.8	
400-48-28-16	2.375	60.3	1.750	44.4	0.500	12.7	0.250	6.3	3.000	76.2	2.625	66.7	4.000	101.6	4.875	123.8	
400-64-32-20	3.000	76.2	2.000	50.8	0.625	15.9	0.313	8.0	4.000	101.6	2.750	69.9	5.000	127.0	6.500	165.1	

400-40-24-12	1.750	44.4	1.500	38.1	0.375 9.5	0.188	4.8
400-48-28-16	2.375	60.3	1.750	44.4	0.500 12.7	0.250	6.3
400-64-32-20	3.000	76.2	2.000	50.8	0.625 15.9	0.313	8.0
400-64-36-20	3.000	76.2	2.250	57.1	0.625 15.9	0.313	8.0
400-64-40-16	3.000	76.2	2.500	63.5	0.500 12.7	0.250	6.4

Note: Universal joint assemblies are available with different bore/keyway sizes on each hub. Many combinations are standard products. Please call for part numbers, price and availability.

400 Series – Uncovered

400 series universal joints are available in stainless steel or coated for use in food grade and petrochemical applications. The replaceable bronze bushing facilitates visual inspection of the wear which can eliminate unplanned downtime. The replaceable components also lower the total cost associated with coupling replacement.

Metric and special sizes available upon request. Please call or fax form at the back of catalog.

Drive bushings (2)

Precision ground long life Press fit into center cube

Note: The first number(s) after the 300 or 400 series prefix represent the outside diameter of the universal joint in 16th's of an inch. A number following this is the diameter of the bore in 16th's of an inch. If the product has a keyway it will be represented by a number following the bore size and is in 32nd's of an inch. For example, 300-20-12-6 is a 1.25' O.D. (20/16") universal joint with a .75" (12/16") bore on each end and a .188" (6/32") keyway.

Add F to part number for Flat Cover.

6.4 Add C to part number for Bulbous Cover.

Part Number	UJ Size	
Replaceme	nt Kits	
UJ-Kit-2.5	2.5"	
UJ-Kit-3.0	3.0"	
UJ-Kit-4.0	4.0"	

Replacement Kits include the following: 1-Cube, 1-Main Pin, 2-Steel Bushings, 2-Bronze Bushings, 1-Bolt with Nut

Double Universal Joints

- Double universal joint with operating angles up to 70 degrees
- Full range of sizes from 3/8" to 4"
- Center hub available with bearing support
- Available with or without lubrication covers
- Standard cover supplied is Neoprene or Nitrile, others available
- Select from solid hubs, bored hubs, and bores with keyways
- In addition to the standard items listed, each hub can have a unique interface geometry
- Field/customer machinable alloy steel
- Available with needle bearings
- Plating available upon request

	Minimum Statio To	Ultimate	liltimate		Max	imum tony Stoll	Maximum F	Peak Torque	Torsional Play per joint			
Size	Size Strength		Axial Strength		(overload) Torque		reversal c	Test Torque		Max		
	Lbs-in	N-m	Lbs N		Lbs-in	N-m	Lbs-in	N-m	Lbs-in	N-m	Degrees	
Perform	nance spe	cifications	s for standa	rd products	S							
3/8"	276	31	500	2,224	156	18	55	6	4	0.45	1.00	
1/2"	504	57	1,400	6,228	300	34	110	12	4	0.45	0.80	
5/8"	960	108	2,500	11,121	576	65	190	21	4	0.45	0.64	
3/4"	1,680	190	4,500	20,017	1,008	114	340	38	4	0.45	0.53	
7/8"	2,520	285	7,000	31,138	1,512	171	500	56	8	0.90	0.46	
1"	4,500	508	12,500	55,603	2,700	305	900	102	8	0.90	0.40	
1-1/4"	7,200	813	19,700	87,630	4,320	488	1,450	164	8	0.90	0.32	
1-1/2"	12,000	1,356	24,000	106,757	7,200	813	2,400	271	8	0.90	0.27	
1-3/4"	15,600	1,763	29,000	128,998	9,360	1,058	3,100	350	8	0.90	0.23	
2"	26.040	2,942	39.000	173.481	15.600	1.763	5.200	588	8	0.90	0.20	

Metric and special sizes available upon request. Please call or fax form at the back of catalog.

Part Number (Uncovered)	<i>ا</i> +.001, Outside	A ,006 Diameter	B +/(Overall)31 Length	E (REF)	K (REF)	Part Number (Uncovered)	C +/(Bore [) 31 Depth	G +.003 Bore Dia	000 imeter
	in	mm	in	mm	in	mm	in	mm		in	mm	in	mm
Solid Hub	S								Bored Hubs				
300-D-6-S	0.375	9.5	2.625	66.7	0.875	22.2	0.875	22.2	300-D-6-4	0.375	9.5	0.250	6.3
300-D-8-S	0.500	12.7	2.938	74.6	0.938	23.8	1.063	27.0	300-D-8-6	0.500	12.7	0.375	9.5
300-D-10-S	0.625	15.9	3.313	84.2	1.094	27.8	1.125	28.6	300-D-10-8	0.625	15.9	0.500	12.7
300-D-12-S	0.750	19.1	3.813	96.9	1.250	31.8	1.313	33.4	300-D-12-8	0.750	19.0	0.500	12.7
300-D-14-S	0.875	22.2	4.500	114.3	1.500	38.1	1.500	38.1	300-D-14-8	0.938	23.8	0.500	12.7
300-D-16-S	1.000	25.4	5.000	127.0	1.688	42.9	1.625	41.3	300-D-16-10	0.938	23.8	0.625	15.9
300-D-20-S	1.250	31.8	5.563	141.3	1.875	47.6	1.813	46.1	300-D-20-12	1.000	25.4	0.750	19.0
300-D-24-S	1.500	38.1	7.000	177.8	2.250	57.1	2.500	63.5	300-D-24-14	1.125	28.6	0.875	22.2
300-D-28-S	1.750	44.4	7.875	200.0	2.500	63.5	2.875	73.0	300-D-28-16	1.250	31.8	1.000	25.4
300-D-32-S	2.000	50.8	8.750	222.2	2.750	69.8	3.250	82.5	300-D-32-18	1.375	34.9	1.125	28.6
400-D-40-S	2.500	63.5	10.500	266.7	3.500	88.9	3.500	88.9	400-D-40-24	1.750	44.4	1.500	38.1
400-D-48-S	3.000	76.2	13.750	349.2	4.500	114.3	4.750	120.6	400-D-48-28	2.375	60.3	1.750	44.4
400-D-64-S	4.000	101.6	17.000	431.8	5.313	135.0	6.375	161.9	400-D-64-36	3.000	76.2	2.250	57.1

Part Number	+/-	C	+ 003	G - 000		Keyw	ay Size		A		D	REF)	Max	mum Co	ver Diam	eter
(Uncovered)	Bore	Depth	Bore Di	ameter	Wic	ith	De	pth	Outside D	006 Diameter	Hub L	ength	Fla	at	Bulb	ous
	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
Bored Hubs	ored Hubs with Keyways									d Unive	ersal Jo	oints				
300-D-8-5-2	0.500	12.7	0.313	8.0	0.063	1.6	0.031	0.8	0.375	9.5	0.531	13.5	0.625	15.9	0.781	19.8
300-D-10-5-3	0.625	15.9	0.313	8.0	0.094	2.4	0.047	1.2	0.500	12.7	0.500	12.7	0.750	19.1	1.031	26.2
300-D-12-7-4	0.750	19.1	0.438	11.1	0.125	3.2	0.063	1.6	0.625	15.9	0.625	15.9	0.938	23.8	1.156	29.4
300-D-14-8-4	0.938	23.8	0.500	12.7	0.125	3.2	0.063	1.6	0.750	19.1	0.688	17.5	1.063	27.0	1.438	36.5
300-D-16-10-6	0.938	23.8	0.625	15.9	0.188	4.8	0.094	2.4	0.875	22.2	0.859	21.8	1.250	31.8	1.563	39.7
300-D-20-12-6	1.000	25.4	0.750	19.1	0.188	4.8	0.094	2.4	1.000	25.4	0.984	25.0	1.375	34.9	1.906	48.4
300-D-24-14-6	1.125	28.6	0.875	22.2	0.188	4.8	0.094	2.4	1.250	31.8	1.031	26.2	1.688	42.9	2.188	55.6
300-D-28-16-8	1.250	31.8	1.000	25.4	0.250	6.4	0.125	3.2	1.500	38.1	1,219	31.0	1,938	49.2	2,750	69.9

Part Number	+/-	C	+ 003	G		Keyw	ay Size		, and	A	D	REF)	Max	imum Co	ver Diam	neter
(Uncovered)	Bore	Depth	Bore Di	ameter	Wie	lth	De	pth	+.001, Outside I	006 Diameter	Hub L	osea .ength	FI	at	Bulb	ous
	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
Bored Hubs	with I	Keyw	ays						Covere	d Unive	ersal Jo	oints				
300-D-8-5-2	0.500	12.7	0.313	8.0	0.063	1.6	0.031	0.8	0.375	9.5	0.531	13.5	0.625	15.9	0.781	19.8
300-D-10-5-3	0.625	15.9	0.313	8.0	0.094	2.4	0.047	1.2	0.500	12.7	0.500	12.7	0.750	19.1	1.031	26.2
300-D-12-7-4	0.750	19.1	0.438	11.1	0.125	3.2	0.063	1.6	0.625	15.9	0.625	15.9	0.938	23.8	1.156	29.4
300-D-14-8-4	0.938	23.8	0.500	12.7	0.125	3.2	0.063	1.6	0.750	19.1	0.688	17.5	1.063	27.0	1.438	36.5
300-D-16-10-6	0.938	23.8	0.625	15.9	0.188	4.8	0.094	2.4	0.875	22.2	0.859	21.8	1.250	31.8	1.563	39.7
300-D-20-12-6	1.000	25.4	0.750	19.1	0.188	4.8	0.094	2.4	1.000	25.4	0.984	25.0	1.375	34.9	1.906	48.4
300-D-24-14-6	1.125	28.6	0.875	22.2	0.188	4.8	0.094	2.4	1.250	31.8	1.031	26.2	1.688	42.9	2.188	55.6
300-D-28-16-8	1.250	31.8	1.000	25.4	0.250	6.4	0.125	3.2	1.500	38.1	1.219	31.0	1.938	49.2	2.750	69.9
300-D-32-18-10	1.375	34.9	1.125	28.6	0.313	8.0	0.156	4.0	1.750	44.5	1.375	34.9	2.188	55.6	2.813	71.5
400-D-40-24-12	1.500	38.1	1.500	38.1	0.375	9.5	0.188	4.8	2.000	50.8	1.438	36.5	2.625	66.7	3.313	84.2
400-D-48-28-16	1.750	44.5	1.750	44.5	0.500	12.7	0.250	6.4	2.500	63.5	2.000	50.8	3.250	82.6	4.125	104.8
400-D-64-36-20	2.250	57.2	2.250	57.2	0.625	15.9	0.313	8.0	3 000	76.2	2 625	66 7	4 000	101.6	4 875	123.8

4.000

Standard uncovered joints will be supplied with or without cover groove

Double – Uncovered

Note: The first number(s) after the 300 or 400 series prefix represent the outside diameter of the universal joint in 16th's of an inch. A number following this is the diameter of the bore in 16th's of an inch. If the product has a keyway it will be represented by a number following the bore size and is in 32nd's of an inch. For example, 300-20-12-6 is a 1.25' O.D. (20/16") universal joint with a .75" (12/16") bore on each end and a .188" (6/32") keyway.

> Add F to part number for Flat Cover. Add C to part number for Bulbous Cover.

Metric and special sizes available upon request. Please call or fax form at the back of catalog.

101.6 2.750 69.9 5.000 127.0 6.500 165.1

Telescopic/Quick-Change Industrial Universal Joints

- Make routine drive train changes and repairs faster than ever
- Quick-Change design able to be replaced in seconds without tools
- Eliminates the need for timeconsuming alignment of motors
- **Telescopic feature allows for** dynamic length change
- Available from 3/8" to 4" diameter up to 12 feet long
- Can be covered to extend service life
- Also available as axially free (no spring) for fixed retention
- Variety of connecting shafts available to meet application needs

Apex Telescopic/Quick-Change universal joint assemblies consist of two universal joints mounted at opposite ends of a special spring-loaded connector. Spring tension holds the assembly in driving position, yet permits instant removal by compressing one end of the assembly and lifting it clear.

Proper alignment (as shown above in the "correct" diagram) is critical for telescopic applications.

Replacement	Universal	Joints
-------------	-----------	--------

Part No.	Used On	Style	Cover*
10-135	Ettco Drill Head	х	C/F
10-141	Ettco Drill Head	Х	C/F
10-143	Ettco Drill Head	х	C/F
10-144	Ettco Drill Head	Х	C/F
10-145	Ettco Drill Head	х	C/N
10-146	Ettco Drill Head	Х	C/F
10-171	Ettco Drill Head	х	C/C
14-190	Ettco Drill Head	Х	C/C
14-191	Ettco Drill Head	х	C/C
14-192	Ettco Drill Head	Х	C/C
UJ-130	U.S. Drill Head	Х	C/F
UJ-248-E	U.S. Drill Head	X2	F
UJ395AUJ395E	U.S. Drill Head	х	C/C
UJ395AUJ248E	U.S. Drill Head	Х	C/F
UJ-193-A	Johnson Drill Head	S	С
UJ-193-C	Johnson Drill Head	S	F
UJ-296-A	Johnson Drill Head	S	С
UJ-296-C	Johnson Drill Head	S	F
UJ-331-A	Johnson Drill Head	S	С
UJ-331-H	Johnson Drill Head	S	F
16-610-A	Johnson Drill Head	S	С
16-610-H	Johnson Drill Head	S	F
20-791-A	Johnson Drill Head	S	С
20-791-B	Johnson Drill Head	S	F
10-249	Burgmaster Drill Head	Х	C/C
16-060	Burgmaster Drill Head	S	C/C
UJ-794-A	Burgmaster Drill Head	S	С
UJ-794-B	Burgmaster Drill Head	S	С
20A-537	Burgmaster Drill Head	S	С
20A-538	Burgmaster Drill Head	S	С
32-151	Burgmaster Drill Head	S	С
32-253	Burgmaster Drill Head	S	С
UJ-1066-B	Jarvis Drill Head (lower sub assembly)	X2	Ν
10-007-B	Jarvis Drill Head (lower sub assembly)	X2	Ν
12-019-A	Jarvis Drill Head (upper sub assembly)	X1	С
12-089-B	Jarvis Drill Head (lower sub assembly)	X2	Ν
UJ-233-C	Commander Drill Head	d S	С
12-301	Commander Drill Head	X	C/C

Cover Designations: Hex Designations: Hex = Female hex

C = Bulbous Cover F = Low Profile Cover N = No Cover M. Hex = Male Hex

Specifications													
В	G1	G2	Α										
5 1/4 to 4 5/8	5/16 hex	5/16 hex	5/16										
7 5/8 to 5 5/16	5/16 hex	5/16 hex	5/8										
7 5/8 to 6 1/16	5/16 hex	1/4 hex	5/8										
5 1/4 to 4 5/16	5/16 hex	5/16 hex	5/8										
5 11/32 to 4 7/16	5/16 hex	3/16 hex	5/8										
5 11/32 to 4 7/16	5/16 hex	1/4 hex	5/8										
7 5/8 to 5 15/16	5/16 hex	5/16 hex	5/8										
8 7/8 to 7 9/16	1/2 hex	7/16 hex	7/8										
7 9/16 to 8 7/8	1/2 hex	7/16 hex	7/8										
7 15/16 to 9 1/16	1/2 hex	5/15 hex	7/8										
3 29/32	14 hex	1/4 hex	5/8 x 1/2										
3 7/8	1/2m. Hex	3/8	5/8										
9 to 8 1/4	1/2 hex	1/2 hex	3/4										
9 to 8 1/4	1/2 hex	3/8 hex	3/4 to 5/8										
1 7/16	1/4 hex	25/64 male	1/2										
1 7/16	5/16 hex	1/4 hex	1/2										
1 3/4	5/16 hex	25/64 male	5/8										
1 5/8	5/16 hex	5/16 hex	5/8										
2 1/2	3/8 hex	5/8 male	3/4										
2 1/4	1/2 hex	3/8 hex	3/4										
2 15/16	1/2 hex	3/4 hex	1										
2 1/2	5/8 hex	1/2 hex	1										
3 3/4	3/4 hex	7/8 male	1 1/4										
3 3/4	3/4 hex	3/4 hex	1 1/4										
9 13/32	1/2-20 male	7/16 male	5/8										
18 1/2 to 17 1/2	5/8 male	5/8	1										
3 3/4	5/8 hex	15/16 male	1 1/4										
3 3/4	7/8	5/8 hex	1 1/4										
5	1-6B spline	1 1/4	1 1/4										
5	1-6B spline	15/32	1 1/4										
5 1/2	1-6B spline	1 14/32 male	2										
5 1/2	1 1/8-6B spline	1 3/8	2										
3 5/8	3/8 m. hex	3/16 hex	3/8										
3 5/8	3/8 m. hex	5/16 hex	5/8										
3 7/8	7/16 hex	3/8 hex	3/4										
3 5/8	3/8 m. hex	3/8 hex	3/4										
2 17/32	5/16	3/8	5/8										
7 21/32 to 6 3/8	3/8 hex	3/8 hex	3/4										

Style X

Light-Duty Military Standard Universal Joints

Heavy-Duty Military Standard Universal Joints

Dimensions														
MS-20270-B6	0.372	9.45	1.750	44.45	0.375	9.52	0.625	15.88	0.250	6.35	0.312	7.92	0.035	0.016
MS-20270-B8	0.495	12.57	1.875	47.62	0.500	12.70	0.625	15.88	0.375	9.52	0.437	11.10	0.065	0.030
MS-20270-B10	0.620	15.75	2.187	55.55	0.625	15.88	0.750	19.05	0.500	12.70	0.562	14.27	0.095	0.043
MS-20270-B12	0.745	18.92	2.500	63.50	0.750	19.05	0.875	22.22	0.625	15.88	0.687	17.45	0.160	0.073
MS-20270-B14	0.870	22.10	3.000	76.20	0.937	23.80	1.031	26.19	0.750	19.05	0.875	22.22	0.220	0.100
MS-20270-B16	0.995	25.27	3.375	85.72	0.937	23.80	1.125	28.57	0.812	20.62	0.875	22.22	0.385	0.175
MS-20270-B20	1.245	31.62	3.750	95.25	1.000	25.40	1.187	30.15	1.062	26.97	0.937	23.80	0.630	0.286
MS-20270-B24	1.495	37.97	4.500	114.30	1.125	28.57	1.375	34.92	1.250	31.75	1.062	26.97	1.200	0.545

			foreignel n	lov		Minimum Ul	timate Static T	orque	Axial Te	nsion &	Endura	nce Torque	Tests
Dort Number	Anglo		lorsional p	ау	Spec	ifications	Аре	ex Average	Compr	ession		Tor	que
Fart Number	Aligie	Test T	orque	Maximum	Lho in	N	I ha in	N	Lbo	N	Operating Angle	l ho in	N
		Lbsin	N-m	Degrees	LUSIII	N-111	LUSIII	N-111	LUS.	, N		LUS.III	N-111
Performance													
MS-20270-B6	0	4	0.452	1.00	175	19.78	250	28.25	200	890	15°	26	2.94
MS-20270-B8	0	4	0.452	0.80	250	28.25	480	54.24	200	890	15°	38	4.29
MS-20270-B10	0	4	0.452	0.64	500	56.50	950	107.35	300	1,335	15°	75	8.48
MS-20270-B12	0	4	0.452	0.53	1,000	113.00	1,600	180.80	400	1,779	15°	150	16.95
MS-20270-B14	0	8	0.904	0.46	1,750	197.75	2,500	282.50	500	2,224	15°	262	29.61
MS-20270-B16	0	8	0.904	0.40	2,500	282.50	4,500	508.50	600	2,669	15°	375	42.38
MS-20270-B20	0	8	0.904	0.32	5,000	565.00	7,000	791.00	800	3,558	15°	750	84.75
MS-20270-B24	0	8	0.904	0.27	7,500	847.50	11,500	1,299.50	1,100	4,893	15°	1,125	127.13

		A +.000,002 (+.000,051) Outside Dia.		 +/- (+/- Overall	B .015 .381) Length	(+.031, (+.787, Bore	C ,000 ,000) Depth	D Mi	n	(+.004 (+.102 Bore D	G ,001 ,025) iameter	ł +/ (+/ Insp. He	H 015 381) ole Loc.	Max (+.102 Cove	J Dia. ,025) r Dia.	L +/((+/: X-Hole	015 381) e Loc.	We M	ight Iax
Par	t Number	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	Lbs.	kg
Dimensi	ions																		
MS	-20271-B6	0.372	9.45	2.000	50.80	0.500	12.70	0.563	14.30	0.250	6.35	0.437	11.10	0.781	19.84			0.07	0.032
MS	-20271-B8	0.495	12.57	2.625	66.67	0.625	15.88	0.688	17.48	0.375	9.52	0.562	14.27	1.031	26.19			0.09	0.041
MS-	-20271-B10	0.620	15.75	2.750	69.85	0.750	19.05	0.813	20.65	0.500	12.70	0.687	17.45	1.156	29.36			0.18	0.082
MS-	-20271-B11	0.620	15.75	2.750	69.85	0.750	19.05	0.813	20.65	0.500	12.70	0.687	17.45	1.156	29.36	0.312	7.92	0.18	0.082
MS-	-20271-B12	0.745	18.92	3.187	80.95	0.875	22.22	0.938	23.83	0.625	15.88	0.812	20.62	1.437	36.50			0.24	0.109
MS-	-20271-B14	0.870	22.10	3.625	92.07	1.000	25.40	1.063	27.00	0.750	19.05	0.937	23.80	1.562	39.67			0.35	0.159
MS-	-20271-B16	0.995	25.27	4.062	103.17	1.187	30.15	1.188	30.18	0.812	20.62	1.062	26.97	1.906	48.41			0.55	0.250
MS-	-20271-B20	1.245	31.62	4.625	117.47	1.125	28.57	1.313	33.35	1.062	26.97	1.125	28.57	2.187	55.55			0.90	0.409
MS-	-20271-B24	1.495	37.97	5.250	133.35	1.312	33.32	1.438	36.53	1.250	31.75	1.250	31.75	2.750	69.85			1.50	0.682

			Torsional play			Minin	num Ultima	te Static	Torque	Axial *	Tension	Enduranc	e Torque	Tests
			Test 1	orque	Maximum	Specif	ications	Apex /	Average	& Com	pression	Operating	Toro	que
	Part Number	Angle	Lbsin	N-m	Degrees	Lbsin	N-m	Lbsin	N-m	Lbs	N-m	Angle	Lbsin	N-m
Perf	ormance Specif	icatior	าร											
	MS-20271-B6	0	4	0.452	0.83	200	22.60	275	31.08	500	2,224	15°	30	3.39
	MS-20271-B8	0	4	0.452	0.62	600	67.80	675	76.28	1,000	4,448	15°	90	10.17
	MS-20271-B10	0	4	0.452	0.50	1,080	122.04	1,200	135.60	1,500	6,672	15°	162	18.31
	MS-20271-B12	0	4	0.452	0.42	1,900	214.70	2,100	237.30	2,000	8,896	15°	285	32.21
	MS-20271-B14	0	8	0.904	0.36	3,000	339.00	3,500	395.50	3,500	15,568	15°	450	50.85
	MS-20271-B16	0	8	0.904	0.32	4,700	531.10	5,500	621.50	5,700	25,354	15°	705	79.67
	MS-20271-B20	0	8	0.904	0.24	9,500	1,073.50	10,500	1,186.50	7,000	31,136	15°	1,425	161.03
	MS-20271-B24	0	8	0.904	0.20	14,500	1,638.50	15,500	1,751.50	9,000	40,032	15°	2,175	245.78

APEX

MS 271 Series

Heavy-duty MS 271 military standard universal joints have undergone qualification testing and meet or exceed the requirements of Military Specification MIL-DTL-6193 and Standard Drawing MS20271.

MS 271 Series

MS Series Military Standard Universal Joints

Needle Bearing Universal Joints

Apex military standard universal joints are designed to strict specifications to assure unsurpassed strength-to-weight ratios, torsional and axial overload capacity and low torsional deflection. Built to withstand the most demanding conditions, Apex military standard joints require minimal maintenance; in

most cases, the original may last the service life of the vehicle or machine. Apex military standard joints are not adversely affected by fretting corrosion or Brinelling from vibration, shock loads

or overloads. Available in heavy-duty 271 Series

or light-duty 270 Series, Apex military standard universal joints can be ordered with or without protective lubrication covers. Consult your Apex representative for application details.

High rigidity means low deflection rates

The deflection curves below prove the axial and torsional strength of Apex military standard universal joints. You get maximum overload protection, trouble-free operation and long service life.

> LIGHT DUTY SPEC. ULTIMATE

TORQUE MIN

16

18 20 22

Bored Hub В С +/-.010 in. | +/-.016 in. | +.000, -.002 in .000. -.051 mm Swind Bored Hut Dia Hub Dia. Part Number in mm in mm in mm in mm

Dimensions and Specifications: Bored Hub 12A-100

1.593 40.46 0.750 19.05 0.745 18.92 1.688 42.86 0.625 15.88 0.813 20.64 0.219 5.56 0.755-19.18- 0.531 13.49 0.156 3.97 0.520 0.236 1500 169.5 0.750 19.05 1.938 49.23 1.125 28.58 1.245 31.62 1,750 44.45 1.062 26.97 1.063 26.99 0.312 7.92 1.005-25.53- 0.688 17.48 0.219 5.56 0.800 0.362 7500 847.5 20A-1447 1.000 25.40

* Supercedes MS-24312

	P	м	l	N	Weigh	t Joint	Static	Torque	16/32 Dian External Involu	neter Pito Ite Splino	ch e Data
Spline Hub	+/010 in.,	+/254 mm	N	lin.	Total	Max.	Ma	ax.	Number Tests	Pitch D	Dia. Ref
Part Number	in.	mm	in.	mm	Lbs.	kg	Lbsin N-m		Number leeth	in.	mm
Dimensions and	Specifica	tions: Sp	line Hub	See Table	Above A thru	L)					
12A-101	2.656	67.46	1.438	36.51	0.57	0.259	1500	169.5	11	0.688	17.46
20A-1448**	3.312	84.12	2.000	50.80	1.20	0.544	7500	847.5	15	0.938	23.81

	M +/010 in., +/254 mm			N	Weigh	t Joint	Static	Torque	16/32 Dian External Involu	neter Piter Ite Spline	ch e Data
Spline Hub	+/010 in.,	+/254 mm	N	lin.	Total	Max.	M	ax.	Manage and Tarakta	Pitch E	Dia. Ref
Part Number	in. mm		in.	mm	Lbs.	kg	Lbsin	N-m	Number leeth	in.	mm
imensions and Specifications: Spline Hub (For Bored Hub End See Table Above A thru L)											
12A-101	2.656	67.46	1.438	36.51	0.57	0.259	1500	169.5	11	0.688	17.46
20A-1448**	3.312	84.12	2.000	50.80	1.20	0.544	7500	847.5	15	0.938	23.81
**Supercedes MS-243	314										

- Hand-assembled needles eliminate torsional free-play/"Backlash"
- Designed for continuous duty
- Midget grease fittings in hubs allow field lubrication
- Elastomeric cover optional
- Ideal for applications over 2000 rpms
- Meet performance requirements
- Operating angles up to 25 degrees
- Shaft/hub configurations designed to meet your application needs

Spline Hub

Length straight cylindrical section

)01 in. 25 mm	F . +/016 in. m+/397 mm		G +/005 in. +/127 mm		н		J +/005 in +/127 mm		L Pilot Hole Drill		Weight Max.		Static Torque Max.	
mm	in	mm	in	mm	in	mm	in	mm	in	mm	Lbs.	kg	Lbs.in	N-m

1. Multiply operating speed (in RPMs) by operating angle (in degrees) to get the RPM-working angle factor (X-Axis).

Intermittent Operation Parameters:

TRANSMITTED

• Operating angle less than 5°: On time must not exceed 50% cycle time and cannot be greater than 5 minutes.

• Operating angle 5°-10°: On time must not exceed 30% of total cycle time and cannot be greater than 4 minutes.

• Operating angle greater than 10°: On time must not exceed 20% of total cycle time and cannot be greater than 3 minutes.

For Intermittent Operation:

- 2. Find the intersecting point between transmitted torque (Y-Axis) and RPM-working angle factor (X-Axis).
- 3. Choose the universal joint performance curve which is directly above the intersecting point from Step 2.

For Continuous Operation:

- 2. Find the intersecting point between 2 times the transmitted torgue (Y-Axis) and RPM-working angle factor (X-Axis).
- **3.** Choose the universal joint performance curve which is directly above the intersecting point from Step 2.

228-1736 or use the online form at http://apexuniversal.com/UJquote.cfm.

Company Name	Ac	ldress		
City	St	ate	Zip	Country
Individual's Name	Title	Phone	Fax	e-mail
1. Application			Military A	Application? Yes No
2. Quantity to be quoted:				
3. Nature of Operation:) or lat	ormittant: 🗆 (Tima an	Time off	
a. Continuous. ⊡(⊓ours per day-), or, int	ennintent. 🗆 (Time on		
b. Operating temperature:	Maximum	Minimu	n	
b. Non-operating temperature:	Maximum	Minimu	n	
4. Describe operating environment (s	such as corrosive, abrasive, e	xtremes in temperature, etc	:.)	
			·	
5. Horsepower transmitted by univer	sal joint	or torqu	e	
6. R.P.M	If v	variable, state range		
7. Operating angle: Maximum angle	required			
8. Backlash (torsional freeplay) cond	ition desired: 🗌 Mil-J-6193	Mil-U-3963	Not Critical	□ Other
UJ Geometry is Male Female Teles C C C C C C C C C C C C C	MINIMUM CLEARANCI FROM CENTERLINE COPIC & QUICK-Chang DISTANCE BETV	E DUDIE VEEN SHAFTS DUDIE OUDIE	OFFSET BETV SHAFTS	WEEN UJ Geometry is Alale Female

Request for information only - this is NOT an order. Important: To expedite quote, fill out form completely and FAX to 937-

POWER TOOLS SALES & SERVICE CENTERS

Please note that all locations may not service all products. Contact the nearest Apex Tool Group Sales & Service Center for the appropriate facility to handle your service requirements.

> Sales Center 🖗 Service Center

NORTH AMERICA | SOUTH AMERICA

Detroit, Michigan 🥒 Apex Tool Group 2630 Superior Court Auburn Hills, MI 48236 Phone: +1 (248) 393-5640 Fax: +1 (248) 391-6295

Canada 🌰 🎤 Apex Tool Canada, Ltd. 7631 Bath Road Mississauga, Ontario L4T 3T1 Canada Phone: (866) 691-6212 Fax: (905) 673-4400

Lexington, South Carolina 🥒 Apex Tool Group 670 Industrial Drive Lexington, SC 29072 Phone: +1 (800) 845-5629 Phone: +1 (919) 387-0099 Fax: +1 (803) 358-7681

Mexico 🅜 🎤 Apex Tool Group Manufacturing México S. de R.L. de C.V. Vialidad El Pueblito #103 Parque Industrial Querétaro Querétaro, QRO 76220 Mexico Phone: +52 (442) 211 3800 Fax: +52 (800) 685 5560

France 🕒 🎤

Cedex, France

B.P. 28

Apex Tool Group S.A.S.

25 rue Maurice Chevalier

77831 Ozoir-La-Ferrière

Fax: +33 1 64 43 17 17

Phone: +33 1 64 43 22 00

Phone: +55 15 3238 3820

EUROPE | MIDDLE EAST | AFRICA

England

Apex Tool Group GmbH & Co. OHG C/O Spline Gauges Piccadilly, Tamworth Staffordshire B78 2ER United Kingdom Phone: +44 1827 8727 71 Fax: +44 1827 8741 28

Hungary 🌒 🎤 Apex Tool Group Hungária Kft. Platánfa u.2 9027 Györ Hungary Phone: +36 96 66 1383 Fax: +36 96 66 1135

ASIA PACIFIC

Australia 🥒 Apex Tool Group 519 Nurigong Street, Albury NSW 2640 Australia Phone: +61 2 6058 0300

Japan 🅒 🎤 Apex Tool Group Japan Korin-Kaikan 5F, 3-6-23 Shibakoen, Minato-Ku, Tokyo 105-0011, JAPAN Phone: +81-3-6450-1840 Fax: +81-3-6450-1841

China 🅒 🎤 Apex Power Tool Trading (Shanghai) Co., Ltd Building A8, No. 38 Dongsheng Road Pudong, Shanghai China 201201 Phone: +86 21 60880320 Fax: +86 21 60880298

Korea 🅒 Apex Tool Group Korea

#1503, Hibrand Living Bldg., 215 Yangjae-dong, Seocho-gu, Seoul 137-924, Korea Phone: +82-2-2155-0250 Fax: +82-2-2155-0252

India 🅭 🌽 Apex Power Tools India Private Limited Gala No. 1, Plot No. 5 S. No. 234, 235 & 245 Indialand Global Industrial Park Taluka-Mulsi, Phase I Hinjawadi, Pune 411057 Maharashtra, India Phone: +91 020 66761111

Apex Tool Group, LLC Phone: +1 (800) 845-5629 Fax: +1 (919) 387-2614 www.apexpowertools.com

SP-1400-EN | 0015 0M | Specifications subject to change without notice. | © 2015 Apex Tool Group, LLC | Printed in USA

Louisville, Kentucky 🎤 Apex Tool Group 1000 Glengarry Drive Suite 150 Fairdale, KY 40118 apexpowertools.com/service

Brazil 🖉 🎤 Apex Tool Group Ind. Com. Ferram, Ltda. Av. Liberdade, 4055 Zona Industrial Iporanga Sorocaba, São Paulo CEP# 18087-170 Brazil Fax: +55 15 3238 3938

Germany 🔶 🎤 Apex Tool Group GmbH & Co. OHG Industriestraße 1 73463 Westhausen Germany Phone: +49 (0) 73 63 81 0 Fax: +49 (0) 73 63 81 222